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A B S T R A C T   

The large uncertainties in wind power generation will bring great challenges to the analysis of optimal reactive 
power dispatch (ORPD). This paper considers a multi-objective ORPD strategy solved by a heuristic search al
gorithm that combines the elitist non-dominated sorting genetic algorithm with inheritance (i-NSGA-II) and a 
roulette wheel selection to optimize the operation of wind power integrated systems. The proposed ORPD 
strategy employs day-ahead predicted wind energy and load demand data to optimally set of the following 
control variables: i) optimal tap positions of on-load tap changers (OLTCs), ii) reactive demand set point of 
reactive power compensators and iii) active and reactive power outputs of wind farms (WFs) with the objectives 
to minimize: a) voltage deviations, b) active power loss, c) wind turbine harmonic distortions and d) number of 
switching operations of OLTCs. Because of the uncertainties of wind energy and load demand, hourly modifi
cations of the day-ahead optimal results are also formulated to determine the real-time optimal reactive power 
dispatch. The proposed new ORPD strategy has been rigorously tested using IEEE 33-bus test system, PG&E 69- 
bus test system and modified real GB network. Results obtained confirmed the efficacy and applicability of the 
proposed strategy in both distribution and transmission networks.   

1. Introduction 

Recently, as a result of large-scale wind farm integration in both 
transmission and distribution networks, significantly increased risks of 
voltage fluctuation and cascading tripping in transmission networks, as 
well as much higher voltage rise and drop fluctuation leading to poor 
power quality in distribution networks, have been reviewed and re
ported [1]. Facing emerging these challenges, authors suggests that 
current voltage control methods may not be sufficient to just maintain 
acceptable voltage profiles, so that a proper optimization strategy in 
both transmission and distribution systems is needed. To operate power 
systems in a secure, economic and stable manner with large-scale wind 
farm integration, optimized reactive power dispatch (ORPD) is one of 
the key measures to mitigate the risks of voltage fluctuations [2–4]. 

Existing ORPD strategies normally optimize single or two objectives, 
such as power loss and voltage deviations. This is solved by adjusting the 
generators VAr outputs, transformer taps and capacitors/reactors or 
reactive compensators with well-established objective functions under 

various constraints (such as network configurations). In addition, 
impact of more often OLTCs switching operations and increasing har
monic emissions from wind farms on network operation assets life have 
been reported in [5] and [6], respectively. Consequently, minimizing 
the number of switching operations of OLTCs has been considered in the 
various studies [7,8], and harmonic emission regulation for wind farms 
has been included in the relevant network operator codes [9]. This 
creates a need to include both switching operation times of OLTCs and 
harmonic emission as two additional objectives for ORPD strategy in 
wind power integrated systems. 

Principally, ORPD can be formulated as a mixed integer, multi- 
variable, multi-constraints, non-linear, non-convex problem. To solve 
an objective function of ORPD problem, various strategies based on 
classical methods have been proposed in [8,10–18]. By considering an 
ORPD problem as a second-order cone (SOC) programming problem, 
distributionally robust optimization with wasserstein distance is used to 
address the uncertainties for ORPD in active distribution networks [10]. 
By using branch flow model-based relaxed power flow, a coordinated 
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optimization problem for active and reactive power dispatch as a mixed 
integer SOC programming problem has been solved in [11]. To address 
the uncertainties of various components in active distribution networks, 
such as distributed generations, two-stage classical optimization models 
are reviewed [12–17]. In [12], a mixed integer convex programming 
model is used. In [13], a risk-based mixed integer quadratically- 
constrained model for the long-term VAr planning problem with mul
tiple objectives has been proposed. In [14], data-driven stochastic pro
gramming model is proposed and formulated as a two-stage problem. 
Similar strategy is also used in [15] to address the energy and reserve 
dispatch problem in renewable energy integrated systems to minimize 
system generation costs. Furthermore, a two-stage algorithm based long- 
term reactive power sources placing is proposed for large transmission 
networks in [16]. A pseudo-decoupling dispatch strategy based two- 
stage robust optimization has been proposed in [17] to minimize 
network loss in distribution network. The nonlinearity of ORPD equa
tions is handled by a successive linear approximation approach in [8] in 
transmission networks. A simplified convex problem is obtained by 
linearizing the constraints [18], in which it characterizes the dispatch 
approximation errors between the original non-convex economic 
dispatch problem and the solutions of commonly used approximated 
convex relaxation classical methods. Nevertheless, this type of approx
imation approach show large error in the application to realistic trans
mission systems. According to literature [19], algorithmic 
recommendations for different types of networks, for radial distribution 
networks, the approximation error can still be neglected by solving an 
optimization problem based on branch flow model (BFM). However, for 
mesh networks, especially large networks with higher level complexity, 
a heuristic search algorithm can be worth exploring for finding feasible 
solutions within limited time. 

With the advance of artificial intelligence algorithms and consider
able increasing in the computational power, various heuristic search 
algorithms, such as differential evolution algorithm [20], cuckoo search 
algorithm [21], jellyfish search algorithm [22], and salp swarm algo
rithm [23] have been considered to solve ORPD problems. However, for 
a complex multi-objective optimization problem, they may easily lead to 
local optimal solutions due to non-convexity of the ORPD problem and 
different directional or conflicting objectives of the objective functions 
[3]. To address multiple objective optimizing problem challenges, 
various methods, such as an improved heap-based optimizer [24], 
teaching learning based optimization [25], firefly algorithm [26], 
oppositional krill herd algorithm [27], particle swarm optimization 
[28], artificial bee colony [29], genetic algorithm considering dynamic 
crowding distance [30] or genetic algorithm incorporating fuzzy for 
both radial network reconfigurations and losses [31], multi-objective 
evolutionary algorithm [32] and adaptive immune algorithm [33] 
have been proposed and considered to solve multi-objective ORPD 
problem. 

So far most ORPD strategies are designed for distribution networks 
considering only single or two objectives such as power losses and 
voltage deviations. For large wind farm integration systems with sig
nificant voltage variation, it may be also necessary to consider reducing 
both OLTC switching operations and harmonic emissions. Moreover, 
there is a need to include the consideration of large wind generation and 
load demand variations hourly. These additional considerations with a 
larger number of control variables would make the objective function 
solving process for ORPD problem more complex. Hence, more efficient 
and faster optimal computational algorithm would be necessary. In this 
paper, to apply the proposed strategy in both distribution and trans
mission networks and to avoid approximation error, a heuristic search 
algorithm is used. Therefore, we consider a multi-objective OPRD 
strategy solved by a heuristic search algorithm that combines the elitist 
non-dominated sorting genetic algorithm with inheritance (i-NSGA-II) 
[34] and a roulette wheel selection [35]. Using this algorithm, fast 
convergence keeping the same level of accuracy has been achieved in 
order to optimize the operation of power system with integrated wind 
farms. By formulating hourly modifications of the day-ahead optimal 
results based on critical real-time measurements, this paper will show a 
significant improvement for determining both the day-ahead and real- 
time ORPD application in wind power integrated systems. By solving 
the proposed objective function using applied improved genetic algo
rithm, the solving process is more computationally efficient compared 
with other heuristic search algorithms. 

Main contributions of this paper are as follows:  

i) a new strategy with a more complex objective function for solving 
ORPD problem is proposed, considering simultaneously power 
losses, voltage deviations, operation times of OLTCs and wind 
turbine harmonics emission;  

ii) more control devices are considered which means optimal 
engagement of wind turbines, reactive power compensators and 
transformers equipped with OLTCs are well-thought-out; 

iii) an improved algorithm, that combines two major GA based ad
justments together, solves the formulated multi-objective opti
mization problem faster so the proposed strategy can be applied 
into both day-ahead and hourly modifications;  

iv) the proposed ORPD strategy are applied in both distribution and 
transmission networks. 

In this paper, two distribution systems, IEEE 33 bus and PG&E 69 bus 
systems and one transmission system, a modified real GB network and its 
real data are used for simulation of day-ahead and hourly optimizations 
to prove that the proposed ORPD strategy can calculate the optimal 
solution by improved GA for both distribution and transmission systems 
and can be achieved within reasonable calculation time. All simulations 
have been done in MATLAB. 

2. Optimized reactive power dispatch strategy in power systems 
with integrated wind turbines 

In this Section, a new ORPD strategy including (i) a day-ahead 
planning based on forecast data and (ii) hourly modifications based on 
real-time measurement, is presented with multi-objective function, 
system constraints and control variables defined, as well as an improved 
GA for finding optimal solution for the created multi-objective optimi
zation problem. In Fig. 1, time scales for implementing the proposed 
ORPD strategy in both day-ahead and hourly time are given. Note that 
the hourly modifications are triggered only when the differences be
tween forecast inputs of day-ahead optimization and real-time mea
surement are above a threshold value which means a forecast updates 
received. If not, the modifications for that particular hour should not be 
performed and the day-ahead outputs should be used. 

Firstly, the proposed strategy assumes a day-ahead planning, un
dertaken at the moment tplan. In this time scale, control variables, i.e. 

Fig. 1. Time scale of the ORPD strategy for wind power integrated 
power system. 
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active and reactive output power for WTs, injected reactive power for 
shunt capacitors (SCs), Static VAr Compensators (SVCs) and tap posi
tions for OLTCs, are determined for each hour. They are used as initial 
settings for the hourly modifications at t0, in which the inputs were 
updated using hourly real-time data, which are considered to be more 
reliable and less uncertain compared to the forecasted inputs used for 
the day-ahead time. Both day-ahead and hourly optimal solutions are 
obtained using an improved GA described later in this Section. The new 
ORPD strategy is described in Subsections below. 

2.1. Day-ahead optimization 

The role of the day-ahead ORPD is to optimally operate the system 
and consequently to ensure sufficient safety margins. The proposed 
multi-objective constrained optimization strategy considers a) tap po
sitions of OLTCs, b) capacitances of SCs and SVCs, and c) active and 
reactive powers of WTs. They are belonging to the set of control vari
ables, dominating in the day-ahead optimization of the ORPD strategy. 
The optimization is based on the following four criteria:  

(i) to minimize the network active power losses, ΔPloss,  
(ii) to minimize voltage deviations across the network, ΔUave,  

(iii) to minimize the number of tap switching operations caused by 
tap staggers and  

iv) to minimize the system average total harmonic distortion 
(SATHD). 

These above-mentioned criteria may have different levels of impor
tance depending on the system planning and operation priorities. 
Criteria priorities are modelled by introducing adequate, prescribed 
weighting factors ω1, ω2 , ω3 and ω4 , respectively. Therefore, a day- 
ahead multi-objective optimization function can be formulated as fol
lows: 

minF = ω1F1(ΔPloss)+ω2F2(ΔUave)+ω3NTAP +ω4SATHD (1) 

where F1(ΔPloss) and F2(ΔUave) are satisfaction functions related to 
active power losses and average system voltage deviation, NTAP is the 
total tap step difference from initial tap positions for all OLTCs existing 
in the system and SATHD is the system average THD. The first two 
objective functions are traditionally considered as the most important 
criteria. Keeping them just within predefined limits would not lead to 
minimal losses and smallest voltage deviations. That is why for both 
mentioned criteria, adequate satisfaction functions have to be selected, 
what is described below. 

Firstly, the power losses are calculated as follows: 

ΔPloss =
∑

Pgrid +
∑

PWT −
∑

Ploads (2) 

where S-type membership function is used [29]: 

F1(ΔPloss) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ΔPloss⩽a

2(
ΔPloss − a

b − a
)

2 if a⩽ΔPloss⩽
a + b

2

1 − 2(
ΔPloss − b

b − a
)

2 if
a + b

2
⩽ΔPloss⩽b

1 if ΔPloss⩾b

(3) 

where Pgrid , PWT and Pload are active powers of the traditional gen
erators, WTs and load respectively; a and b are pre- calculated minimum 
and maximum power losses. The minimum power losses, a, are calcu
lated by running power flow assuming when all reactive power demand 
is compensated locally and all transmission lines only transfer active 
power. The maximum power losses, b, is the maximum allowable system 
power losses, which is calculated by running power flow assuming that 
Q is produced from synchronous generators only [29]. S-type member
ship function is shown in Fig. 2. 

For the second criterion, the Gauss-type function is used [29]: 

ΔUave =

∑M
i=1|Ui − Ui nom|

M
(4)  

F2(ΔUave) = e(ΔUave − c)2/σ2 (5) 

where Ui_nom is the nominal voltage at bus i of the M bus system, c and 
σ are the mean value and standard deviation of the voltage deviation set 
as 0 and 0.0425 pu, respectively. 

For the third criterion, the total tap step difference is calculated as 
[7]: 

NTAP =
∑N

l=1
xl (6) 

where xl is the tap step difference from initial tap positions on OLTC 
at bus l and N is the total number of OLTCs in system. 

The level of distortion of signals in the grid is considered in the fourth 
criterion, in which SATHD is the system average THD, calculated as 
follows [36,37]: 

SATHD =

∑M
k=1SkTHDk

Stotal
(7) 

where Sk is the generated or consumed apparent power at bus k, 
THDk is the total harmonic distortion at bus k and Stotal is the total 
apparent power generated by the system. The information about the 
total harmonic distortion at each bus (THDk) can be obtained using 
power quality meters, or other sensors capable of monitoring signal 
distortions. These data can be detected with built-in harmonic ratio 
function of sensors or watt meters [38]. 

The range of feasible values of all four criteria is different, requiring a 
shift to their per unit consideration. This challenge can be resolved by 
defining all four weighting factors as follows: 
⎧
⎪⎪⎨

⎪⎪⎩

ω1 = μ1/F1 max, 0⩽μ1⩽1
ω2 = μ2/F2 max, 0⩽μ2⩽1

ω3 = μ3/NTAP max, 0⩽μ3⩽1
ω4 = μ4/SATHD max, 0⩽μ4⩽1

(8) 

where μ1, μ2, μ3 and μ4 are weighting coefficients representing the 
importance of each criterion in per unit, F1_max, F2_max, NTAP_max and 
SATHD_max are pre-calculated maximum values of each criterion. The 
weighting coefficients must meet the following condition: 

μ1 + μ2 + μ3 + μ4 = 1 (9) 

The values of weighting coefficients have been set through a sensi
tivity study in this paper, as described in Section III. In real systems, it 

Fig. 2. S-type membership function.  
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can be selected based on different system operation priority by inde
pendent system operators. 

Based on (2) – (9), the results of the day-ahead optimization are 
optimal values for all control variables, i.e. a) tap positions of OLTCs, b) 
capacitances of SCs and SVCs, and c) active and reactive powers of WTs. 

2.2. Hourly modifications 

The day-ahead optimization is based on forecasted inputs, which can 
be significantly different than the actual inputs measured at the begin
ning of each hour of the day. To cope with this fact and to use more 
reliable real-time inputs, which as such would lead to optimal solutions 
valid for each new hour, an hourly modification can be introduced. This 
could cause excessive number of changes of the tap positions of the 
OLTCs, what would have impact on reducing of equipment life. That is 
why the hourly modification considers their positions delivered by the 
day-ahead optimization as unchanged, leading to the conclusion that 
ω3 = 0 . Consequently, the hourly modification multi-objective function 
becomes: 

minF = ω1F1(ΔPloss)+ω2F2(ΔUave)+ω4SATHD (10) 

Obviously, now there are only 3 criteria and consequently only 3 
weighting factors which have the same nature as the weighting factors 
from the day-ahead optimization (equation (1)). However, they have 
different values, considering that: 

μ1 + μ2 + μ4 = 1 (11) 

That is why, in general terms, these weighting coefficients have 
different values compared to those in day-ahead optimizations. 

2.3. Constraints 

All control variables and criteria should meet power flow constraints: 
⎧
⎪⎪⎨

⎪⎪⎩

Pi = Ui

∑M

j=1
Uj(Gijcosδij + Bijsinδij)

Qi = Ui

∑M

j=1
Uj(Gijsinδij − Bijcosδij)

(12) 

where Gij and Bij are admittance matrix’s real and imaginary part and 
δij is voltage angle difference between buses i and j. Also, the following 
technical constraints must be satisfied: 

ΔPloss min⩽ΔPloss⩽ΔPloss max (13)  

Ui min⩽Ui⩽Ui max (14)  

TAPl min⩽TAPl⩽TAPl max (15)  

SATHD⩽SATHD max (16) 

where ΔPloss min and ΔPloss max are the minimum and maximum sys
tem power losses, Ui_min and Ui_max are minimum and maximum 
permissible voltages at bus i, TAPl_min and TAPl_max are the minimum and 
maximum limits for tap position of the OLTC at bus l and SATHD max is 
the permissible system average THD. 

In the day-ahead ORPD strategy there exists additional constraint 
which is maximum number of operation times, Ol_max, the tap position 
can be changed per day: 

0⩽Ol⩽Ol max for l = 1, ...,N (17) 

There is one more constraint, related to reactive power outputs of 
WTs, here Type 3, i.e. DFIG. According to [39–41], the following two 
reactive power limits have to be considered: 

QWT
t,max = PWT

t,max

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
/

pf 2 − 1
√

(18)  

QWT
t,max =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(SWT
t,max)

2
− (PWT

t,max)
2

√

(19) 

where QWT
t,max is the reactive power limit of WT, PWT

t,max is the output 
active power limit of WT, pf is the power factor (in this paper pf = 0.95) 
and SWT

t,max is the apparent power limit of WT. To distinct these two op
tions, (18) is considered as Q-control strategy 1 and (19) as Q-control 
strategy 2. 

With all above constraints ((12)-(19)) and the multi-objective func
tion defined, the ORPD becomes a constrained multi-objective optimi
zation problem, which can be solved using different solvers. An 
improved GA is proposed for solving the formulated problem. Its 
description is given in next Subsection. 

2.4. Improved genetic algorithm 

Genetic algorithm is an artificial intelligence algorithm for solving 
complex non-convex problems by simulating natural evolution process. 
For single-objective problems, GA shows its superiority. However, in the 
multi-objective optimization problem, the biggest problem is how to 
determine the fitness of each individual. Multi-objective optimization 
also known as Pareto optimization involves multi-objective functions. 
The NSGA-II algorithm was proposed by [42] on the basis of GA which is 
ideal for constrained multi-objective optimization problems like power 
system optimization. Furthermore, it has been significantly improved 
and made more computationally efficient by involving parent inheri
tance in [34]. To further improve the GA speed, when making selections, 
the roulette selection algorithm [35] is applied. These two adjustments 
contributed to the efficacy of the entire optimization, what is particu
larly important in a real-time application, in which a large number of 
variables have to be simultaneously processed. 

In this Subsection the improved GA is described, whereas the new 
solver was tested in the next Section. When applying this improved 
genetic algorithm, a number of so-called individuals have to be defined. 
In this paper, each individual refers to a combination of control vari
ables. Individuals are firstly randomly selected from predefined feasible 
space, determined by the constraints adopted for all control variables. 
They are then processed by selection, crossover, and mutation 
procedures. 

In selection procedure, a roulette selection algorithm is used. In
dividuals in each new generation are eliminated like a slot on the rou
lette wheel. The probabilities of these individuals to be selected are 
equal to the probabilities of the stop point dropping into the slot when 
spinning the roulette wheel. For each individual, its slot size is decided 
according to the objective function result for this individual, which is 
calculated as: 

Pm = F(m)/
∑NP

m=1
F(m) (20) 

where Pm is the area size of a certain individual m on roulette which 
is also the selection probability of m, F(m) is the multi-objective function 
adaptive value of m and NP is the size of each population. Furthermore, 
individuals with best performance of each single criterion are also 
calculated in each generation. They also have a chance to generate 
children population using the non-dominated elitist approach with inheri
tance, even though they might not be the best result for the whole multi- 
objective function. However, they also have the possibility to generate 
the global optimal children population when having crossover. Addi
tionally, for the first generation, inherently selected parents develop a 
better pool of parent chromosomes, called inheritance. This adjustment 
will produce a better pool of the child’s chromosomes. After that the 
crossover procedure generates children according to probability of 
crossover. And then remaining children are generated by the mutation 
according to probability of mutation. 

By including the above mentioned adjustments in selection 

Y. Liu et al.                                                                                                                                                                                                                                      



International Journal of Electrical Power and Energy Systems 136 (2022) 107764

5

procedure, essentially smaller number of generations with a minimum 
number of function evaluations converging to the global optimal result 
is required. As it will be demonstrated in next Section by using con
ventional NSGA-II, some 100 generations are needed to reach the 
optimal solutions. On the other hand, improved GA converges to the 
optimal solution within 15 generations only, providing practically the 
same level of accuracy. 

In this solver, to ensure that each selected individual has only the 
control variables within system constraints, the power flow calculation 
is included into the improved GA cycle. This will make the out-of-limit 
individuals to be sifted out immediately and consequently to achieve a 
better result for the objective function. 

2.5. ORPD strategy block diagram 

In Fig. 3, the entire ORPD strategy is depicted in a form of a block 
diagram. Here, Vslack and θslack are voltage magnitude and angle for 

selected slack bus, Vw is the wind speed, Q̇SC, ṖWT , Q̇WT , ẋl are settings for 
control variables obtained as outputs from the day-ahead optimization 

and Q̈SC, P̈WT , Q̈WT are settings for control variables obtained as outputs 
from the hourly modifications. Note that the inputs for the day-ahead 

optimization are less reliable, since they are based on forecasted vari
ables. Also note that in the hourly modifications, the OLTC criterion is 
not considered. The strategy has a routine, checking if the inputs for two 
optimizations are different. If they are, the hourly modifications should 
be performed. If they are not, the modifications for that particular hour 
should not be performed and the day-ahead outputs should be used. 
Based on a number of tests, a difference of more than 5 % indicates that 
the hourly modifications have to be performed. 

The new strategy is tested using networks of different complexity and 
nature. Results are given in Section 3. 

3. Testing of the new ORPD strategy 

To test the proposed ORPD strategy, two distribution systems (IEEE 
33-bus and PG&E 69-bus systems) and one transmission system (modi
fied GB network) are used. Each test system has been extended with 
OLTCs (with switchable range from 0.9 to 1.1) and WTs (penetration 
level around 30%). Reactive power compensation existed in all test 
systems. When applying the improved GA, the crossover and mutation 
probability were respectively 0.8 and 0.3 [31,43]. It is also assumed that 
differences between inputs for both day-ahead and hourly optimizations 
obey Normal distribution [44,45]. 

3.1. Weighting coefficients settings 

The entire testing required appropriate selection of weighting co
efficients, so that three groups of settings are defined (see Table 1). Here 
setting 1 is used for testing the strategy on all test systems, while settings 2 
and 3 are used for testing the strategy on PG&E 69-bus system. 

Fig. 3. Block diagram of the proposed ORPD strategy.  

Table 1 
Weighting coefficients setting scenarios.   

Day-ahead Hourly Modification 

Scenario  μ1   μ2   μ3  μ4   μ1   μ2  μ4  

Setting 1  0.4  0.3  0.2 0.1  0.5  0.3 0.2 
Setting 2  0.4  0.4  0.1 0.1  0.5  0.4 0.1 
Setting 3  0.4  0.4  0.2 0  0.5  0.5 0  
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3.2. Testing using the IEEE 33-bus system 

In this Subsection, a modified IEEE 33-bus system [29,43] shown in 
Fig. 4, is used to test feasibility of the proposed improved GA and to 
provide hourly optimization results, also demonstrating application of 
the two different Q-control strategies based on (18) and (19) respectively. 
Here the system modification is referred to the inclusion of WT and 
shunt capacitors. As a note, in the proposed ORPD strategy, distribution 
system power flows are used for obtaining electrical quantities necessary 

for objective function. 

3.2.1. Comparison between improved GA and conventional GA 
Accuracy and convergence of the proposed improved GA are 

compared with accuracy and convergence of the traditional GA. In Fig. 5 
the convergence characteristic curves for both conventional and 
improved GA are given. Setting 1 is used for weighting coefficients (see 
Section 3.1). As a heuristic search algorithm, GA may have different 
contingency route in each run. Therefore, randomly selected 5 curves 
out of 100 different tests, in which the population size, NP, was 50, are 
presented in Fig. 4 to demonstrate the improved GA family of curves. 
The forecasted WT output active power limit and the load demand are 
both assumed to be 1p.u. The WT reactive output power limit was 
calculated according to the Q-control strategy 2. 

As can be seen in Fig. 5, the proposed improved strategy:  

i) always converges to the same optimal point for which adaptive value 
of objective function equals to 0.62954,  

ii) always converges in less than 15 generations. 

Under the same situation, the conventional GA requires much more 
generations to achieve the optimal point. When considering hourly 
modifications in real networks with higher complexity and more control 
variables, it is critical important to minimize calculation time in order to 

Fig. 4. Single line diagram of the modified IEEE 33-bus distribution system.  

Fig. 5. Adaptive convergence characteristic curves.  

Table 2 
Comparison between Improved GA and conventional GA.  

Results Improved GA Conventional GA Difference 

TAP   1.0024  1.0025 0.01% 

QSC   0.4612MVAr  0.4619MVAr 0.01% 

PWT   3.6315 MW  3.6312 MW 0.02% 

QWT   1.2735MVAr  1.2732MVAr 0.02% 

ΔUave   0.0366p.u.  0.0367p.u. 0.2% 
ΔPloss   1.6137 MW  1.6134 MW 0.01% 
SATHD  0.23965%  0.23961% 0.02% 
F(x)  0.62954  0.62942 0.01% 
Calculation Time  120.266 s  302.134 s 181.868s  

Fig. 6. Typical load demand and WT active power prediction curves [45].  
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against forecast errors. So the improvements of the proposed solver are 
essentially necessary compared with conventional GA. In Table 2 the 
outputs obtained by both improved and conventional GA are shown. All 
settings are within the system limits. As can be seen, the differences in 
results obtained by both algorithms are very small. It can be concluded 
that for a faster speed the accuracy has not been compromised. 

3.2.2. Optimization results of each hour 
Optimization results of each hour for the IEEE 33-bus test system are 

provided under two different Q-control strategies based on (18) and (19) 
respectively. A typical load demand curve and WT active power pre
diction curve [45] are used in this simulation. The predicted inputs of 
each hour, used in this study, are shown in Fig. 6. 

As for the hourly modifications, considering the worst situation, the 
forecast errors are simulated in the case when load demand increases to 
the upper limit and WT output decreases to the lower limit which are ±
10% respectively. So it is assumed hourly modifications have been 

performed for every hour. 
Based on these inputs for both time scales, two Q-control strategies 

with different reactive power limits of DFIG are simulated. Weighting 
coefficients defined through setting 1 (see Section 3.1) are used. 

The Q-control strategy 1 defines the output reactive power limits 
using (18). By this, the 24 h histogram of calculated results is shown in 
Fig. 7. The Q-control strategy 2 uses DFIG’s maximum output reactive 
power capability that can be extended based on (19). The calculation 
results histogram for Q-control strategy 2 is shown in Fig. 8. 

From the results obtained, it can be concluded that:  

i) output results for all control variables and each of four criteria are 
within power system constraints;  

ii) comparing WT reactive power outputs in Fig. 7 and Fig. 8, it can 
be seen that more reactive power compensation will be made by 
WT when Q-control strategy 2 is applied to DFIG; 

Fig. 7. Results of ORPD obtained with Q-control strategy 1 for IEEE 33 bus system with WT.  

Fig. 8. Results of ORPD obtained with Q-control strategy 2 for IEEE 33 bus system with WT.  
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iii) for both Q-control strategies, the optimization results of WT output 
active power are changing similarly to typical wind power pre
diction curve shown in Fig. 6. For instance, at night, the fore
casted WT output active power capability is higher and, in the 
optimization results, the WT output active power is relatively 
high. 

Hence, the proposed ORPD strategy has made full use of the renewable 
energy resources and has provided reasonable results for each hour 
considering system operation nature. 

3.3. Testing using PG&E 69-bus system 

To test the proposed strategy on more complex test system with more 
control variables required, a modified PG&E 69-bus system has been 

Fig. 9. Topology of modified PG&E 69-bus distribution system.  

Table 3 
Optimization results for PG&E 69-bus system with different weighting co
efficients settings.  

Scenarios F(x) ΔPloss (%)  ΔUave (p.u.)  NTAP  SATHD (%) 

Setting 1 0.5776  2.62  0.06263 0 1.79 
Setting 2 0.5829  2.63  0.06143 0.0005 1.81 
Setting 3 0.5674  2.62  0.06076 0 3.42 
Results [29] NA  2.82  0.08880 0 NA  

Table 4 
Optimization results for PG&E 69-bus system at different times of a day.  

t  F(x) ΔPloss 
(%)  

ΔUave (p. 
u.)  

OLTC 
Ratio 

SA 
THD 
(%) 

Calcula- 
tion Time 
(s) 

100 DA  0.5719  2.62  0.06147  1.0005  1.78  180.622  
HM  0.5776  2.62  0.06263  1.0005  1.79  180.262 

500 DA  0.5948  2.40  0.07405  1.0005  1.50  184.673  
HM  0.6029  2.40  0.07843  1.0005  1.59  180.416 

900 DA  0.5274  1.52  0.06253  1.0004  1.07  194.524  
HM  0.5287  1.58  0.06976  1.0004  1.09  189.360 

1300 DA  0.5264  1.30  0.07735  1.0004  0.81  190.860  
HM  0.5293  1.35  0.07919  1.0004  0.76  184.539 

1700 DA  0.5045  1.22  0.06318  1.0004  0.95  192.797  
HM  0.5060  1.27  0.06358  1.0004  0.94  189.157 

2100 DA  0.6136  2.01  0.08236  1.0004  1.81  192.906  
HM  0.6487  2.05  0.08548  1.0004  1.82  184.773  

Fig. 10. Topology of the modified GB network.  
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used in this Subsection. Firstly, weighting coefficients are varied to 
analyse the sensitivity of four criteria and objective function to changes 
in importance of each criterion. In addition, each hour optimization is 
performed using typical load demand and WT active power prediction 
curves (Fig. 6), followed by hourly modifications. The topology of 
modified PG&E 69-bus system is shown in Fig. 9. Four DFIGs connected 
to the test system are assumed to be controlled by Q-control strategy 2. 

3.3.1. Sensitivity study to the selection of weighting coefficients 
To test the sensitivity of each criterion in the proposed ORPD strat

egy, different settings of weighting coefficients have been simulated 
separately (see Section 3.1). Data at 1AM are used for comparison be
tween different scenarios. Additionally, the test results have been 

compared with results provided in [29]. All the results are summarized 
in Table 3. 

In case of the proposed ORPD strategy (first three rows), it can be 
seen that the optimal results for the multi-objective function are similar 
for different scenarios. However, with different settings of weighting 
coefficients, each single criterion has different optimization result. With 
higher weighting coefficient, the criterion will be further optimized. In 
real system, this setting should be selected based on the system opera
tion priority. In this paper, setting 1 of weighting coefficients is chosen to 
do later simulations. The optimization strategy given in [29] considers 
only two criteria which are power losses and voltage deviation. When 
comparing the ORPD strategy with the one given in [29], the proposed 
strategy achieves better results for both criteria. This shows the priority 
of the new strategy. 

3.3.2. Optimization results of each hour 
For each hour optimization, both day-ahead and hourly modifica

tions have been simulated. The results are shown for every four hours in 
Table 4. From the simulation results, the calculation time is within 4 
mins for each hour, which is faster than reference [7] that also uses GA 
based approach for solving their objective function. For day-ahead 
optimization, typical load demand and WT active power prediction 
curves are used. For hourly modifications, considering the worst situa
tion, they are simulated in the case when load demand increases to the 
upper limit and WT output decreases to the lower limit. Under this sit
uation, the proposed strategy can still achieve hourly modifications with 
optimal results for all criteria by finishing calculations within 4 min. 
This shows the feasibility to apply the proposed ORPD strategy into real 
systems. 

3.4. Testing using the GB network 

Both IEEE 33 and PG&E 69 bus systems are distributions networks. 
To demonstrate the feasibility of the proposed ORPD strategy at the 
transmission level, the modified GB network with extensive involvement 

Fig. 11. Forecasted WT output and load demand with their corresponding 
error ranges. 

Table 5 
Optimization results for GB modified network at three different times of a day.  

t  RESULTS TRADITIONAL OPF PROPOSED ORPD STRATEGY 

Day Ahead Hourly Modifications Day Ahead Hourly Modifications 

100 F(x) 0.1823 0.1845  0.15724 0.15749 

PWT (MW)   16708.03 15961.31  11167.27 9914.72 

QWT (MVAr)   171.2 160.3  4564.8 4426.5 

QSC (MVAr)   25.182 38.548  51.612 80.911 

ΔPloss (%)   1.82 1.82  1.25 1.26 
ΔUave (p.u.)   0.01702 0.018031  0.015281 0.016653 
NTAP   0.004 NA  0.002 NA 
SATHD (%)  1.15 1.14  0.66 0.64 

1300 F(x) 0.15602 0.15611  0.14267 0.14301 

PWT (MW)   14432.89 11383.60  9773.78 9517.53 

QWT (MVAr)   143.2 90.8  2798.5 2341.6 

QSC (MVAr)   35.9557 884.2694  101.112 580.5849 

ΔPloss (%)   1.54 1.53  1.25 1.28 
ΔUave (p.u.)   0.016167 0.017291  0.016084 0.016846 
NTAP   0.002 NA  0.001 NA 
SATHD (%)  0.78 0.74  0.45 0.43 

1900 F(x) 0.17110 0.17238  0.15141 0.15176 

PWT (MW)   21655.87 19394.24  14153.34 14117.50 

QWT (MVAr)   219.3 138.9  5312.2 4870 

QSC (MVAr)   1080.255 1233.2497  1081.629 1297.7268 

ΔPloss (%)   1.55 1.53  1.17 1.15 
ΔUave (p.u.)   0.014364 0.014909  0.013127 0.013344 
NTAP   0.004 NA  0.002 NA 
SATHD (%)  0.84 0.80  0.58 0.57  
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of control devices is used. The topology of the modified GB transmission 
network is shown in Fig. 10 [46]. This network consists of 29 buses, 99 
transmission lines and 65 generators. Core control devices in this system 
are 5 OLTCs, 18 WTs with DFIGs and 8 SVCs. HVDC links are not 
considered as control devices owing to their time-consuming operation 
scheme. The power flow for this test network is calculated using MAT
POWER. The traditional OPF calculation results are used for comparison 
to express the merits of the proposed ORPD strategy. 

Based on data from National Grid ESO website [47], WT output and 
load demand hourly forecast with the estimated forecast errors have 
been shown in Fig. 11. 

Based on the forecasted data and the corresponding error ranges, the 
optimized reactive power dispatch strategy has been simulated and 
compared with the traditional OPF strategy. To consider the worst 
operation conditions, WTs output active power limit is set as the mini
mum value of the error range and the load demand is set as the 
maximum value of the error range. As for weighting coefficients, stet
ting1 is used and WTs are with Q-control strategy 2 constraints. Simula
tion results for three randomly selected hours have been shown in 
Table 5. 

The traditional OPF results are obtained using existing GB network 
optimization strategy with only active power cost as the objective 
function. Comparing the traditional OPF simulation results and the 
proposed ORPD strategy simulation results for three different hours of a 
day, it can be clearly concluded that all criteria can be effectively 
optimized via proposed ORPD strategy. This means by implementing the 
proposed ORPD strategy, GB network will be operated in a more stable 
and secure manner. Additionally, calculation time for all hourly modi
fication simulation cases is within 3 min. This means after using the day- 
ahead forecast data to set the initial settings for the involved control 
devices, hourly modifications based on real-time data can still be 
calculated within 3 min even the worst forecast errors happened. 

4. Conclusion 

In this paper a new optimized reactive power dispatch (ORPD) 
strategy is proposed and successfully applied to optimize the operation 
of power systems with integrated wind power generation, at both dis
tribution and transmission levels. This is achieved by solving the 
objective function using heuristic search algorithm to avoid approxi
mation errors caused by analysis methods applied into large trans
mission networks. Compared with the existing strategies, (i) a more 
comprehensive objective function is proposed to achieve multi-objective 
optimization simultaneously, (ii) more control variables are considered 
and (iii) an improved GA based heuristic search algorithm for solving 
the proposed objective function is used. The core of the strategy is 
adequately formulated constrained mixed integer multi-objective 
problem, considering (a) system losses, (b) voltage deviations, (c) 
OLTCs and (d) system harmonic distortions. Additionally, as shown 
through the strategy testing, the proposed improved genetic algorithm 
combining i-NSGA-II and roulette selection for solving the optimization 
problem significantly increases the convergence speed without 
compromising the algorithm accuracy. This is particularly important for 
efficient and timely hourly modifications of control variables, i.e. wind 
generators’ and reactive power compensators’ power injections, as well 
as positions of taps at OLTCs. The importance of the hourly modifica
tions is also demonstrated. This modification process resolves the un
certainties resulting from the discrepancy between forecasted and real- 
time measured data. Next to results describing different features of the 
new strategy, e.g. superior performances compared to previously pub
lished approaches, a general conclusion is that the algorithm can be 
applied in real control centres. 
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